
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 09: Transaction Management

About this topic

• It is essential to maintain the integrity (consistency) of the
database when multiple users are accessing it, or if the system
crashes. Central to both concurrency management and
recovery is the idea of the transaction as a single logical unit of
work (and hence, unit of recovery).

• The most common type of concurrency control is based on
locking, which we will look at in this topic. Database recovery is
usually based on maintaining a log of transactions which can be
used to restore the database to a consistent

• http://claudiofiandrino.altervista.org/Master_degree/Database_
management_system/concurrency_control.pdf

Topic learning outcomes

• After completing this topic you should be able to:

• Explain what is meant by a transaction, and the possible transaction outcomes of
commit and rollback

• Use the SQL commands COMMIT and ROLLBACK
• Define the desirable transaction properties of atomicity, consistency, isolation and

durability (ACID)
• Give examples of the problems (including lost update) that can occur during concurrent

transaction execution
• Explain what is meant by serial, nonserial and serialisable schedules, and give examples

of each
• Describe the use of locking for concurrency management, particularly the two-phase

locking protocol
• /

Topic learning outcomes cont’d

• /
• Explain how deadlock may arise, and describe how deadlock

may be handled by prevention or detection
• Explain the effect of data item granularity in concurrency

control
• Explain the need for database recovery management
• Describe how the transaction log file is used in database

recovery management

Resources for this topic

READING

• Text, Chapter 9 p459-470 “Concurrency Control";
Text, Chapter 9 p477-480 "Database Backup and Recovery"

Other resources:

• Online Chapter 10B p10B-72 - 10B-75:
“Oracle Database Concurrency Control”,
“Oracle Database Backup and Recovery”

• Oracle Help:
http://docs.oracle.com/database/121/CNCPT/consist.htm#CNCP
T020 “Data Concurrency and Consistency”

http://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT020

Lab 9 –
Transaction management and concurrency

• The lab for this topic looks at how we can ensure the database
stays consistent throughout multi-statement transactions and
when multiple concurrent users are updating the database at
the same time. To do this we examine the concept of a
transaction as a single logical unit of work, and the practice of
locking to manage concurrent users.

Topic outline

Transactions Problems with concurrent
transactions

Lost update problem

Uncommitted data problem

Inconsistent retrieval problem

Concurrency management

Serial, non-serial and serialisable
schedules

Locking

Timestamping, optimistic locking
techniques

Database recovery
management

Log-based recovery using
rollback/rollforward

1. Transactions

What is a transaction?

A transaction is a single logical unit of work that must be completed or
aborted in its entirety; Does not allow intermediate states

- A transaction takes content of database and if database is to be
alerted then database must alter from one consistent database state
to another

- To make sure the database is constantly consistent, every transaction
has to being from a known consistent state

- Most real-world database transactions are formed by two or
more database requests.

- A database request is the equivalent of a single SQL statement in an
application program or transaction.

Transaction support in a DBMS

A transaction can either be a:

• Success – where a transaction commits and database is in a
new consistent state.

• Failure – is where a transaction aborts, and database must be
restored to the before state it was in.

- Such a transaction is rolled back or undone.

• A transaction committed, can’t be rolled back.

• An aborted transaction that is rolled back can be restarted later.

Example of a transaction

read(balx) (t=1)

balx= balx+10 (t=2)

write(balx) (t=3)

commit (t=4)

This transaction has two database accesses: (t = time)

- At t=1: Reads the balance of x

- At t=3: Writes the new balance of x

- The “commit” statement tells the DBMS the transaction is complete

Another example:

• Suppose we transfer $10 from Fred's
bank account to Mary's. The
database transaction involves
• 1. Subtract $10 from Fred's account

• 2. Add $10 to Mary's account

• If the database is to remain
consistent it is essential that either:

- Both steps occur, or

- Neither step occurs

• If only one step happens the
database is no longer consistent
- it doesn't represent any actual state in

the real world

What should happen if there is
a failure after Fred’s account is
debited but BEFORE Mary’s
account is credited?

Action Bal(Fred) Bal(Mary) Consistent?

Start 100 50 Yes

Debit
Fred

90 50 No

Credit
Mary

90 60 Yes

End Yes

Transactions in Oracle

• In Oracle a transaction begins implicitly at the first SQL statement and

continues until either COMMIT or ROLLBACK is encountered.

- e.g. Deleting a student and the details of their enrolments should be a

single transaction:

delete records from ENROLMENT

delete record from STUDENT

COMMIT

• Other versions or dialects of SQL may use BEGIN TRANSACTION … END

TRANSACTION to explicitly define the transaction, or ABORT instead of

ROLLBACK.

Properties of a transaction (ACID)

• Atomic – a transaction is completed in its entirety, or not at all
(it is not possible to partially complete)

• Consistent – a transaction needs to be consistent in that it
takes the database from a state of consistency to another

• Isolated – other transactions shouldn’t be allowed to access
any intermediate values of data used by the transaction

• Durable – a durable transaction is one in which all committed
changes are written permanently in DBMS

The takeaways…

• A transaction is a single logical unit of work that the DBMS
must ensure happens in its entirety or not at all

• A transaction moves the database from one consistent state to
another

• SQL commit signals that a transaction is complete and can be
written to the database, and rollback returns it to the original
state

• A transaction must have the ACID properties – atomicity,
consistency, isolation, durability

2. Problems with concurrent transactions (think more than one
transaction trying to update the database at same time)

Concurrency control

• Concurrency control refers to the coordination of

concurrent transactions in a multiprocessing database system

• Most large DBMSs are multi-user – many users need to

access the system at the same time.

Transaction A_________ _ _ _ _ ______ _ _ _ _

Transaction B_ _ _ _ _ _ _______ _ _ _ _ ______

__________ program has CPU, is executing

_ _ _ _ _ _ _ program is waiting for CPU, suspended or doing I/O

• Transactions are processed concurrently because one

transaction operating on the DB at one time is very slow,

although to the users it appears simultaneous

Concurrency control

• Concurrency control is how the simultaneous operations on the
database are managed to stop them from interfering with each
other

• Prevents interference when two or more users are accessing
the database at the same time and one user is updating data in
the database

• Although the two transactions may be correct but transaction
interleaved may create an incorrect result

Problems with concurrency

• If two transactions both access the same database item, it is
possible for their operations to become interleaved in a way
that leaves the database inconsistent

• There are various potential problems:
- Lost Update

- Uncommitted Data

- Inconsistent Retrieval

(Note that different resources may use different terms for the same problems)

Uncommitted data problem

Occurs when one transaction views intermediate results
of another transaction before it has been
committed/completed violates the isolation property

Also called dirty read

TRANSACTION COMPUTATION

T1: Purchase 100 units PROD_QOH = PROD_QOH + 100 (Rolled back)
T2: Sell 30 units PROD_QOH = PROD_QOH - 30

- Correct execution of the transactions …

But, what if T2 reads T1’s data
before the rollback and assumes it
is correct…

Uncommitted data problem
(without concurrency)

The QOH is now 105 – when we
know it should be 5!

Uncommitted data problem
(with concurrency)

T2 reads t1 before t1 is
completed. (This table
shows what would
happen). The rollback is
part of transaction 1 thus
transaction 2 reads before
transaction is completed

Preventing uncommitted data
problem using TPL

T4 puts an exclusive lock on balx

T3 is forced to wait. Only once T4 is fully completed
is T4 read by T3

Lost Update problem

Occurs when an apparently successfully completed update operation by one user is
overwritten (ignored) by another user violates the consistency property which is...

Consider the PRODUCT table, which has an attribute QOH (quantity on hand how
many items we got left). The initial QOH of a particular item is 35.

TRANSACTION COMPUTATION

T1 (transaction 1): Purchase 100 units QOH = QOH + 100

T2: Sell 30 units QOH = QOH - 30

- Under normal circumstances, the transactions will be executed thus… (next
slide)

However, if a transaction was able to read a
QOH before a previous transaction has been
committed, the following will happen …

Lost Update problem
(without concurrency)

Lost Update problem (with
concurrency)

Transaction 2 Ignores
transaction 1 completely.
For example, time = 5 is lost
in the shuffle. So specifically
the update is lost

Preventing lost update problem using
TPL

T2 requests an exclusive lock on balx so it can read and modify  Write_lock(Balc)

T1 also requests exclusive lock on balx. T1 but must wait until t2 is completed. Before it can
put an exclusive lock on balx. Therefore, the update from transaction 2 is not lost since
transaction 1 will read the update and do something with it

Lost Update problem

9-28KROENKE AND AUER - DATABASE PROCESSING, 11th

Edition © 2010 Pearson Prentice Hall

Think of
these are two
transactions
instead of
users

Transaction 2
Ignores transaction
1 completely. For
example, step 3 and
4 are lost. So
specifically the
update is lost

Inconsistent read problem

Occurs when there are two transactions and one
transaction reads the data twice and in between the two
reads another transaction updates the data thus causing
an inconsistent read violates isolation property

Also known as

Non-repeatable read

Phantom read

Inconsistent read problem (with
concurrency)

• T6 is totaling balances of account x ($100), account y ($50), and
account z ($25).

• Meantime, T5 has transferred $10 from balx to balz, so T6 now
has wrong result ($10 too high).

• Problem avoided by preventing T6 from reading balx and balz until
after T5 completed updates.

Preventing inconsistent retrievals
using 2PL

There are two transactions. T5 is
in charge of updating the data.
T5 places an exclusive lock and
updates all the data before T6
begins to read most of the data.
This prevents inconsistent reads
arising

Summary of data read problem
types

• The SQL standard defines different isolation levels that control these. The
programmer declares the isolation level required and the DBMS manages
locks to achieve it

Kroenke & Auer, Figure 9-11

Transaction isolation levels in the SQL
standard and data read problems

• The ‘serialisable’ level of isolation prevents all of
the potential data read problems

• DBMSs vary in their support for these levels

• Oracle supports Serialisable, Read Committed
(default) and Read Only

Summary of concurrency problems

• Lost update

- Occurs when an apparently successfully completed update

operation by one user is overwritten by another user

• Uncommitted data (dirty read)

- Occurs when one transaction can see intermediate results of

another transaction before it has committed

• Inconsistent read

- Occurs when a transaction reads several values but a second

transaction updates some of them during execution of first

The takeaways…

• Concurrent transactions are those that are executed ‘at
the same time’, by interleaving their steps

• When one transaction is able to access data being used
by another transaction before that transaction is
complete, it is possible for the database to become
inconsistent

• There are several potential problems: lost update,
uncommitted data, and inconsistent read

• -- There needs to be some way of ensuring that
transactions can be interleaved but in such a way that
the database remains consistent

3. Concurrency management

Concurrency management

• How to manage concurrent transactions?

Method 1:

• A schedule is a sequence of the operations by a set of
concurrent transactions that preserves the order of the
operations in each of the individual transactions

• Schedules can be
• Serial

• non-serial

• Serialisable schedule

Serial schedule

• Every statements in each transaction are performed
consecutively (serially) with no interleaving operations from
other transactions

• Data isolation is guaranteed since we wait for all the
transaction to complete

Disadvantage

• Processing time is wasted because CPU waits for a write or
read operation to be complete, thus losing several cycles. This
results in unacceptable response times

Examples of serial schedules

Consider the concurrent transactions:

• Transaction A : read X; X := X+10;

• Transaction B: read X; X := X*2;

These could be scheduled as:

- A then B, or

- B then A

So If X = 100

- A then B results in a final value of X = 220

- B then A results in a final value of X = 210

Either result is considered correct. If each individual transaction is correct, then
the serial schedule is correct

Non-serial schedule

• Operations in different transactions are interleaved

Advantage-
• Better use of the CPU and improved response times

Disadvantage-

• BUT as we have seen, this can cause problems (e.g. lost update,
uncommitted data, inconsistent retrievals)

Serialisability

• Serialisable schedule.
• Guarantees correctness of a serial schedule + benefits in performance

through interleaving

We need to ensure that if a set of transactions executes concurrently it
produces the same results as some serial execution

Guaranteeing serialisability

• For concurrency control, DBMS needs to have techniques to
guarantee serialisability

• Typical techniques are:

Pessimistic Locking- predict conflicts will occur, and thus we
need to manages schedule to avoid conflict

Optimistic Locking-

Timestamping

Locks

• Concurrency can be controlled using locks

• A lock guarantees exclusive use of a data item to a current
transaction

• A transaction acquires a lock prior to data access; the lock
is released (unlocked) when the transaction is completed

• Locks can be either placed by command (explicit lock) or
by the DBMS (implicit lock)

• All lock information is managed by a lock manager

Type of lock– binary locks

• A binary lock has either locked (1) or unlocked (0) state

• Locked state is where a transaction locks onto an object so other

transaction can’t use the object

• Unlocked state is where no transaction are currently locked onto the

object so any transaction can lock onto it and use it

• Transaction must unlock the object after termination

• Every transaction requires a lock and unlock operation for each data

item that is accessed

• Very restrictive

Type of lock - shared/exclusive locks

• Shared lock on an item/object by a transaction means the transaction(s)
can read but NOT modify the item/object

• Exclusive lock on an item/object by a transaction means the transaction
can read and modify the item/object
• An item can only be exclusively locked by one transaction at one

time. Thus other transactions must wait until this is released before they
can gain any lock on the item:

Current Lock on Item shared exclusive no lock
Request shared Yes No Yes
for Lock exclusive No No Yes

Advantage-

• More flexible in that many transaction can hold a shared lock on an item
thus allowing an item to be read by many transactions at one time

Shared/exclusive locks

• However, locking on its own doesn't guarantee serialisability -

- Also need some form of protocol or rules about when to lock/unlock

TPL defines how transactions acquire and relinquish locks

• In the growing phase, a transaction gets all the locks it needs
but it will not be unlocking any locks during this phase. When a
transaction gets all its locks, the transaction is in its locked
point

• In the shrinking phase, a transaction releases all its locks and
cannot get any new locks

• Guarantees serialisability but comes at the price of having
locks created earlier and held for longer than is strictly
necessary

• Does not prevent deadlocks

Two-Phase Locking (TPL)

Two-Phase Locking Protocol

Note growing phase and shrinking phase

• Dead locks is the period where there are two transactions and each
transaction waits for locks to be released that are held by the other.

• For example, when two transactions T1 and T2 exist in the following
mode:

T1 has data item X and needs Y
T2 has data item Y and needs X

• If T1 does not unlock data item X, T2 cannot begin; and, if T2 does
not unlock data item Y, T1 cannot continue.
But neither can unlock as are still in growing phase!

Deadlock (deadly embrace)

How A Deadlock Condition Is Created

Deadlock

9-51KROENKE AND AUER - DATABASE PROCESSING, 11th

Edition © 2010 Pearson Prentice Hall

Deadlock

Only one way to break deadlock: abort one or more of
the transactions.

Three general techniques for handling deadlock:
• Timeouts

• Deadlock prevention

• Deadlock detection and recovery

Deadlock should be transparent to user, so DBMS should restart
transaction(s).

Deadlock - Timeouts

• The Transaction that wants to put an exclusive lock on
an object that already has been exclusively locked by
another object, will only wait for a system-defined
period of time.

• Lock requests will time out when the locks isn’t
granted within a system-defined period of time. And
this result in the transactions being aborted and
restarted

Deadlock - Prevention

DBMS predicts whether transactions in the future would
create a deadlock. If they do then steps to help prevent
the creation of a deadlock are implemented.

These steps normally include the abortion and restart of
certain transactions.

The transactions to abort and restart are influenced by
age of the transaction as determined by the timestamp
when it entered the system

Deadlock - Detection and Recovery

• DBMS allows deadlock to happen but identifies it and
breaks it.

• Usually handled by construction of wait-for graph (WFG)
showing transaction dependencies:

•Deadlock exists if and only if WFG contains cycle

• WFG is created at regular intervals.

Recovery from deadlock detection -
issues

Choice of deadlock victim
• Which transaction caused the deadlock?

• How long has the transaction been running?

• How many data items have been updated by the transaction?

• How many data items are still to be updated by the transaction?

How far to roll a transaction back

• Easier to simply rollback entire transaction, but not necessarily the most
efficient

Avoiding ‘starvation’
• The algorithm must ensure same transaction should not always be chosen

as the victim

Lock granularity

• Determines how much of the database is locked

• Can be database, table, page, row, and column (field)

• In general there is a tradeoff between the amount of
concurrency permitted and the amount of overhead
needed to implement

• The best solution depends on the particular
transaction and what it does

• Ideally a DBMS would support a mixture of granularities

Lock granularity - levels

• Database level
- Whole database is locked and other transactions can’t use any of the table

while the whole database is locked

- Advantage
- Good for batch processing of 100,000 rows of updates for instance, but not suitable for

online multi-user databases because access to database would be to slow

• Table level
- Whole table is locked when a transaction wants to access the table. A

single transaction can request to access multiple tables which would result
in multiple tables being locked as well

Disadvantage-

- restrictive in a multi-user environment since some transaction needs to
access the same table thus waiting time is required

Lock granularity - levels

• Page level (common)

- Tables may span many pages

- The page holding the record that is required for the update is locked

• Row level

- For different rows in the same table allows for concurrent access

- Disadvantage

- high level of overhead in maintaining the lock thus high maintenance cost

- Advantage is increase speed of updates from allowing concurrent access

• Field level

- Allows concurrent access to different fields in the same row

- Disadvantage is VERY HIGH level of overhead in maintaining the lock thus very high
maintenance cost.

- Advantage is increase speed of updates from allowing concurrent access

Locking in Oracle

• Oracle is intended for serious multi-user applications and can
handle thousands of concurrent transactions

• Data definition (create table, alter table..) and insert, delete,
update require exclusive locks

• Share locks are required for some operations but not select -
select queries need no locking

• The default lock level is row (record locking) so two
transactions can update different rows in the same table with
no contention

Locking in Oracle

• Oracle only reads committed changes; it will never read dirty
data.

• Oracle deals with deadlock by detection and recovery

Optimistic Locking

• Predict conflicts will not occur thus transactions proceed on that
assumption.

• Prior the commitment of a transaction, a check is made to view
whether there were any conflicts that might affect the
consistency of the database, and the transaction is aborted and
restarted if so

• Optimistic locking is ideal for the Internet and for many intranet
applications since those require bulk loading of transactions thus
try to reduce time

Timestamping

• Locks will not be used thus we can’t get any deadlock

• A global unique timestamp is given to each transaction and the
transaction uses it to organise concurrent transactions in
timestamp order

• If any conflicts were to arise older transaction gets priority

The takeaways…

• The aim of concurrency management is to enable transactions
to be interleaved for performance reasons while remaining
correct

• Serialisable schedules are interleaved schedules equivalent to
a serial schedule

• There are various methods for ensuring serialisable schedules:

• Locking methods, principally Two-Phase Locking (TPL)

• Timestamping

• Deadlock can be a problem in any method that uses locking

4. Database recovery management

Database recovery management

• Recovery management is utilized when a transaction fails and it
restores database back to a consistent state

• In high volume systems, it is vital that the database is able to
recover within a very short time

• Recovery techniques are generally based on the atomic
transaction property:

ALL portions of the transaction must be applied and completed to produce a
consistent database. If, for some reason, any transaction operation cannot be
completed, the transaction must be aborted, and any changes to the database
must be rolled back

Database recovery management

When a transaction writes to the database:

1. The item is updated in a buffer in main memory

2. The contents of the buffer are then written back to disk

• Only after step 2 is the write permanently recorded on disk

• So if there is a failure involving loss of memory between steps
1 and 2, it is possible that even though all the operations in the
transaction have completed, the write is lost

Database recovery management

• The commit statement in a transaction means that all the operations
have been completed and it should now be written to the database

• No commit transaction not completed and so all operations must be
rolledback

• Basis for recovery management:

• If a transaction has issued a commit statement, its effects should not be
lost, whether or not the buffers have actually been written out (ensures
durability property), and

• If there is no commit statement, the transaction has not completed, so
all its operations must be undone (rollback) to ensure atomicity

Techniques for recovery management

Recovery via reprocessing
• Database returns to a identified save point and the workload gets

reprocessed from there

• If the computer is strictly scheduled then the recovered system may
not catch up therefore not an ideal strategy

• Reprocessing may not be in the original order

Shadow paging
• Whenever there is an updates to a page in database copies of the

pages will be produced. And if transaction is to be rolled back the
original page is restored.

Log-based recovery (Rollback/rollforward)

Log based recovery

• The system records progress of each transactions in a log, and
undoes/redoes effect of transactions from the log

• Information about any updates the database is doing is always
written to log prior to the database is updated
• As a result if a crash arises, there is no possibility that the database has

been updated without the log having a record of it

• The log keeps track of before and after images in the log so if
there is a failure we can utilize the images to return the
database back to a consistent state

• Note that the database itself may be updated either:
• At the commit point (deferred update)

• During the transaction (immediate update)

Log based recovery

The DBMS maintains a log which records at least:

• Transaction ID

• Type of log record, e.g. transaction start, commit, insert,
delete, update

• Identifier of data item involved

• Before image (value) of data item

• After image of data item

• Pointers to previous and next operations in a transaction

Sample log file

Image from Connolly & Begg

9-73

Rollback/Rollforward

• Recovery via rollback/rollforward:
• Periodically save the database at a check point and keep the

the log since the last save

• Database log contains records of the changes to the data in
chronological order

• The before and after images of the log are used to
rollback or roll forward the database when a failure
occurs

DAVID M. KROENKE’S DATABASE PROCESSING, 10th

Edition

© 2006 Pearson Prentice Hall

9-74

Rollforward

After-image: a copy of every database record (or page)
after it was changed

Recovers a database by reapplying valid
transactions recorded in the log and using
saved data

DAVID M. KROENKE’S DATABASE PROCESSING, 10th

Edition

© 2006 Pearson Prentice Hall

9-75

Rollback

Before-image: a copy of every database record (or page)
before it was changed

Recovers a database by undoing the erroneous
modifications done to the database (by
uncommitted transactions) and then redoing valid
(committed) transactions

9-76

Checkpoint

• A checkpoint is a save point of where the database and
transaction log are guaranteed to be synchronized
• DBMS stops processing new transactions, completes processing

outstanding transactions, and make sure all buffers are written out to disk

• Once all of the writing is successfully completed  the log and the
database are synchronized

Advantages-

• Checkpoints accelerate database recovery process
• Since database can be restored using after-images since the last

checkpoint

• Checkpoint can be done several times per hour

The takeaways…

• If the system fails, the database must be returned to a
consistent state

• Usually the DBMS handles this by maintaining a log of
transactions that have been applied to the database

• Recovery is done by rollback/rollforward - rolling back
transactions uncommitted at the point of failure, and rolling
forward committed ones

• Checkpoints are a point of synchronisation between the log
and the database, and are used to reduce the amount work
required to recover the database

Topic learning outcomes revisited

• After completing this topic you should be able to:

• Explain what is meant by a transaction, and the possible transaction outcomes of
commit and rollback

• Use the SQL commands COMMIT and ROLLBACK
• Define the desirable transaction properties of atomicity, consistency, isolation and

durability (ACID)
• Give examples of the problems (including lost update) that can occur during concurrent

transaction execution
• Explain what is meant by serial, nonserial and serialisable schedules, and give examples

of each
• Describe the use of locking for concurrency management, particularly the two-phase

locking protocol
• /

Topic learning outcomes revisited

• /
• Explain how deadlock may arise, and describe how deadlock

may be handled by prevention or detection
• Explain the effect of data item granularity in concurrency

control
• Explain the need for database recovery management
• Describe how the transaction log file is used in database

recovery management

What’s next?

• In the next topic we'll explore some further concepts to do with
database implementation, including distributed database
architectures, and database programming using embedded SQL
in Oracle.

